
Journal of Statistical Physics, Vol. 93, Nos. 1/2, 1998

Nonautonomous Hamiltonians
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We present a theory of resonances for a class of nonautonomous Hamiltonians
to treat the structural instability of spatially localized and time-periodic solu-
tions associated with an unperturbed autonomous Hamiltonian. The mechanism
of instability is radiative decay, due to resonant coupling of the discrete modes
to the continuum modes by the time-dependent perturbation. This results in a
slow transfer of energy from the discrete modes to the continuum. The rate of
decay of solutions is slow and hence the decaying bound states can be viewed
as metastable. The ideas are closely related to the authors' work on (i) a time-
dependent approach to the instability of eigenvalues embedded in the con-
tinuous spectra, and ( i i ) resonances, radiation damping, and instability in
Hamiltonian nonlinear wave equations. The theory is applied to a general class
of Schrodinger equations. The phenomenon of ionization may be viewed as a
resonance problem of the type we consider and we apply our theory to find the
rate of ionization, spectral line shift, and local decay estimates for such
Hamiltonians.

1. INTRODUCTION

There are many dynamical systems of interest for which the dynamics can
be viewed as given by a Schrodinger type equation generated by an
operator H(t) = H0+ W(t). Here, H0 is a time-independent (autonomous)
part, assumed to be self-adjoint on a complex Hilbert space f, and W(t)
denotes time-dependent (non-autonomous) perturbation. We consider the
initial value problem for the Schrodinger equation for (j): t->j(t)eH:
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where H0=—A + V(x), with V(x) real-valued and W(t, x) is a smooth
function which is spatially localized and time-periodic or quasi-periodic.
Equations of this type play an important role in tunneling and ionization
physics, and are relevant to an understanding of many nonlinear problems.
This is discussed later in this section.

In this paper, we consider the situation where the unperturbed equa-
tion, corresponding to the case W=0, has a time-periodic solution in 3C,
e.g., a bound state. We study the structural instability of the bound state due
to a perturbation W(t) which is assumed to be periodic. The analysis is
carried out for the special case W(t) = cos(ut) ft, with ft* = ft; see Section 2.
The case of more general perturbations W(t), which are periodic or quasi-
periodic, as well as the case when the unperturbed operator H0 has more
than bound state can be treated by our approach. We indicate briefly in
Section 4 the modifications required in the analysis.

Viewed in terms of the coordinates of the unperturbed dynamical
system, the perturbation W(t) has the effect of coupling the bound state to
the continuum modes. The mechanism of instability is a slow transfer of
energy from the bound state part of the solution to the continuum modes
and an associated decay due to radiation of energy to infinity. We develop
a theory which yields a detailed picture of the intermediate and long time
behavior of solutions to the initial value problem. Our main results are
presented in Theorems 2.1 and 2.2. A consequence is that the solution of
the initial value problem for the perturbed dynamical system with initial
data given by the time-periodic bound state of the unperturbed problem,
is characterized by transient exponential decay ~e~r| t | where 0<r =
(P(||| W|||2), for HI |||W||| small, and by algebraic decay as |t| -> oo. We derive
explicit formulae for the lifetime, r = F-1 (Eq. (2.9)) and the spectral line
shift (Eq. (4.21)).

The approach we take is closely related to our work on quantum
resonances(37,38) and on the radiation damping of localized states for non-
linear wave equations(39) We now illustrate the main idea in the current
context. Consider a linear Schrodinger equation:

We assume that —A + V(x) has exactly one eigenvalue at A.0<0, with
corresponding eigenfunction v / 0 ( x ) . Therefore, the unperturbed (/?= 0)

with initial condition P(0) = P0 in a suitable subspace of M'. An important
special case, studied in Section 3, is:
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problem has a spatially localized and time-periodic solution, \ l / 0 ( x ) e - i n o t .
We assume that the continuous spectrum of H0 is equal to the real non-
negative half-line. The perturbation W(x, t) = fi(x) cos(ut) is assumed to be
real-valued, to decay sufficiently rapidly as |x| -> oc, and to be small in an
appropriate norm; see Section 3.

We now ask the following question: Does the bound state solution of
the unperturbed problem persist under small perturbations of this type?

As indicated above, we find that generic perturbations lead to a slow
radiative decay of solutions. To illustrate the mechanism of decay, we first
observe that it is natural in the unperturbed case to decompose the solu-
tion as:

The system (1.7) can viewed as an infinite dimensional dynamical
system consisting of two components: (i) a finite dimensional part,
describing an "oscillation" with complex amplitude, a(t), coupled to ( i i ) an

Pc is the projection onto the continuous spectral part of the operator H0.
The equations (1.5) decouple and we have that all solutions of (1.5) are of
the form (1.4) with: (i) a(t) = e - 1 a° 'a(G), and under suitable hypotheses on
V(x), ( i i ) $ d ( t , x ] decays (dispersively) as |t |->oo, in the sense that
\\<i>d(t, .)||p -»0, (p > 2) or for some a > 0, ||<x> ~° o d ( t , . )||L2_ 0.

How is the dynamics effected by a small spatially localized and time-
periodic perturbation ( B = 0 ) ? Substitution of (1.4) into (1.3), leads to a
weakly coupled dynamical system for a(t) and <j>d(t). This system is derived
and studied in Sections 4-6. A simplification of the resulting system which
we shall use to illustrate the main idea is the following:

Then, we have that

with initial conditions
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infinite dimensional dispersive wave equation on Rn, governing <j>d(t, x). It
is simple to check that the system (1.7) has the conserved energy:

The first term in (1.8) corresponds to the oscillator energy and the second
to the wave energy.

Intuitively, a spatially localized finite energy disturbance of the rest
state should result in motions induced in the oscillator as well as waves
propagating "outward" and eventually escaping any compact set (a charac-
teristic of dispersive waves). Due to the coupling (fl= 0) of the oscillator
and waves, we expect the energy of the oscillator, |a(t)|2 , to decay toward
zero as time progresses. This energy is transferred to the continuum modes,
while the total energy of the system, $[a, u], remains constant in time.
This is what is proved under suitable hypotheses in Theorems 2.1 and 2.2.

The way in which we establish energy transfer from the discrete to the
continuum modes is by showing that one can transform a system of the
type (1.7) to a normal form, in which internal damping, which drives the
energy transfer, is made explicit. This damping is due to a resonant
coupling of the discrete oscillator mode with the continuum modes. We
now explain the origin of this effect.

Viewing ft as small, we set a(t) = e - i n o t A ( t ) , where A(t) is "slowly
varying," ( d t A ( t ) = O ( P ) ) . In terms of the amplitude, A ( t ) , the system (1.7)
becomes:

Since the variation of A(t) is slow, the source term in (1.10) is essentially
quasi-periodic in time. One of its frequencies is A 0 +/<, which we assume to
be strictly positive, i.e., A0+Ueoc o n t( — z). That is, the non-autonomous
parametric forcing of frequency fj. induces a resonant forcing of the wave-
field </>d. The character of solutions to (1.9)-(1.10) can be deduced by first
solving (1.10) for $d and then substituting the result into (1.9). The result
is a reduction to an ordinary differential equation for A(t). This is reminis-
cent of the center manifold approach, commonly used in dissipative
systems (see, for example, refs. 3 and 41) and recently applied in a
Hamiltonian context(16)

The asymptotic behavior of the ordinary differential equation governing
A(t) can be deduced by a asymptotic evaluation of the right hand side of
(1.9), considering carefully the contribution to <j>d coming from a neighbor-
hood of the resonant energy, A 0 + u .



1.1. Emergence of Irreversible Behavior in a
Time-Reversible System

Thus, the original dynamical system, (1.3), which is Hamiltonian and,
in particular, time-reversible (invariant under the transformation <t>(t, x) \->
(ji( — t , x ) ) , is equivalent to a dynamical system with some apparent time-

The constant F is always non-negative. If it is strictly positive, then
(1.12) is a damped oscillator, with damping coefficient F resulting from
coupling of the discrete and continuum modes. In our general theorems,
Theorems 2.1 and 2.2, we have hypothesis (H6), that the analogous general
expression for F is strictly positive. This holds generically in the space of
perturbations W under consideration.

A is & real constant (the Lamb shift) and C'(ft2) and p(t) is a bounded
oscillatory function of t which is <P(/?2).

The right hand side of (1.13) is defined using the spectral theorem
for -A on L2(Rn). In terms of the Fourier transform, ,F[z](£) =
j e - ' ( ' x z ( x ) dx, we find:

where

Substitution of this result into the equation for A(t) yields:
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asymmetry.3 This is related to the ^.-prescription discussed in Section 4; see,
in particular, Proposition 4.2. At the heart of this apparent paradox is that
the energy of the oscillator, which is coupled to the continuum, is
propagated out to infinity because the singular limit:

1.2. Normal Forms for Coupled Oscillator-Wave Systems

The damped oscillator above is a normal form equation, which
illustrates a more general phenomenon. Dynamical systems like (1.3) can
be viewed as a Hamiltonian systems consisting of two subsystems: a single
(or, in general, multiple) degree of freedom oscillator and an infinite
dimensional radiating wave field.

(I) In (1.3) the discrete oscillator frequency does not lie in the con-
tinuous spectrum of wave frequencies. However, the time periodicity of the
potential generates frequencies in the solution which resonate with con-
tinuum modes.

(II) In refs. 37 and 38, quantum resonance type problems are con-
sidered in which the discrete oscillator frequency coincides with a frequency
of continuum modes. Coupling of the two occurs due to a time-indepen-
dent localized potential.

(Ill) In our study of radiation damping of "breather-like" struc-
tures(39) we find, as in (1.3), that the discrete oscillator frequency does not
lie in the continuous spectrum of wave frequencies. Here, the coupling is
due to a nonlinear potential which generates frequencies which lie in the
continuous spectrum.

3 This is related to a "paradox" raised in the late nineteenth century by Zermelo and others
concerning the irreversibility of macroscopically observed behavior in physical systems and
the reversibility of the microscopic equations of motion. This was addressed in the context
of classical systems via a statistical approach in the work of Maxwell and Thomson and
culminated in the work of Boltzmann. In quantum systems, for example in the quantum
measurement theory, extension of these ideas apply. The source of the emergence of irrever-
sibility, is the coupling of systems with few degrees of freedom to systems with many. For
a discussion, see ref. 20.

satisfies a local energy decay estimate as t -> + co; see (H4). Thus, for t < 0,
in (1.12) we replace F by —P.

364 Soffer and Weinstein



where dn+1,n and cn + 1,n are real numbers. Non-zero real parts of the nor-
mal form coefficients arise due to coupling of discrete and continuum
modes. In the linear problems: (I) and (II), we always have d10= — /<0.
In (III) we have k10 = ic10 and, depending on the details of the nonlinear
interaction, we may have: k21 = ic21 and £32= — -T + ic32,

(39) k21 = — T +
ic21,

(26) or other possibilities. In each case there's a different expression for
F, the first nontrivial real contribution to a normal form coefficient, but the
essence of its calculation is as described above. Generically one has
— F<0, and it is natural to conjecture that the first non-zero F=d n * + 1 , n *

is strictly negative.

1.3. Connection with Persistence Theory of Periodic Solutions

The condition F>0 (see also (H6)) can be seen to arise in another
manner. Motivated by the perturbative approach to constructing periodic
solutions of ordinary differential equations, it is natural to seek a solution
of (1.3) in the form:

where if/j is formally of order f}J. Substitution of the ansatz (1.19) into (1.3)
yields that:

with complex coefficients;

where the constants cn +1,n are real numbers.
How is this normal form altered as a result of coupling of the oscillator

to an infinite dimensional radiative wave equation?
In refs. 37, 38, and 39 and in the present work, we find the more

general dispersive or radiative Hamiltonian normal form:

In an isolated single degree of freedom Hamiltonian system, the
general normal form is:
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The first equation of (1.23) has a localized solution because A0— /j. <0 and
lies in the resolvent set of H0. Note however, that A0 + /u > 0, and therefore
the second equation can have a localized solution only if the projection of
fS\l/0 onto the generalized eigenfunction associated with the continuum
energy A 0 +j« vanishes. This is equivalent to T=0, where F is defined by
(1.13); see also (1.14) or, more generally, (H6). Generically, F>0. The
results of this paper show, in particular, that this obstruction to solvability
in the class of quasiperiodic functions, implies radiative decay of solutions
of the initial value problem.

Finally, we discuss various contexts, where problems involving time-
dependent potentials have been studied. Equations with time dependent
potentials arise in mathematical physics and are important in applications,
e.g., electron microscopy and solid state devices. In quantum physics their
analysis dates back to the early days of the theory, where the process of
ionization by external field (light waves) was studied and later nuclear spin
resonance and charge transfer problems; see, e.g., refs. 19 and 7. The
problem of ionization and more generally of excitation of a molecule by
radiation is also important in laser optics and chemistry. Recent models of
chaos(14) and stochastic resonances also involve time dependent potential
models, e.g., ref. 42. The expression (1.13) (see also (H6)) is the analogue
of the Fermi Golden Rule, which arises in the study of spontaneous emis-
sion, autoionization.(7,19,29) In the context of the problem of ionization of
an atom by a time-dependent electric field a heuristic derivation is presented
in Section 42 of ref. 19.

Equations of type (1.1) and (1.2) are also relevant in the study of
coherent solutions of nonlinear systems. For example, a periodic or
quasiperiodic solution can be viewed as a bound state of an equation of
this type with a self-consistent (nonlinear) time-dependent potential. This
point of view was first exploited by Sigal(33,24) who used the methods of

For {]/a we obtain the equation:

These equations can be solved by setting:

where
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dilation analyticity to relate the generic structural instability of quasi-peri-
odic solutions of certain nonlinear systems to the generic instability of an
embedded eigenvalue in the continuous spectrum of a Floquet operator.
This approach yields the spectral line shift and the Fermi golden rule,
which give the location of the resonance to which the embedded eigenvalue
has been perturbed. The approach we have taken to the non-persistence
question is to show by a study of the large time behavior of the initial value
problem that solutions decay slowly as t -> oo.

The analysis of time dependent resonant problems in the physics
literature is based on formal time dependent perturbation theory; see
refs. 19 and 7, where Dyson series to first order is used, and ref. 30 where
Dirac's perturbation theory is applied. This analysis is limited in many
respects. In refs. 19 and 7 it is assumed, among other things, that the
relevant time scale of the approximation is smaller than e-1 where e is the
perturbation size, while we know that the lifetime, is of order e - 2 ; It is also
not clear how to get the spectral line shift from this approach.

Problems involving time dependent potentials have received con-
siderable attention in the mathematical physics literature during the last
twenty years, and a number of different approaches, based on scattering
theory techniques, have been developed. In ref. 9 a kind of Floquet theory
is used to analyze the case of time-dependent potentials decaying like L1

functions in time. The approach has also been used to treat some problems
involving time-periodic potentials and long range potentials.(17,43,10)

Another type of time-dependent problem is the charge-transfer
problems. These are problems in which the potential W is a sum of terms
of the type: W(x — vt). In ref. 45 a charge transfer problem is mapped in a
similar way onto a three-body type problem which is treated by resolvent
methods; In ref. 6 a geometric approach to scattering was used to study the
general behavior of scattering states with time-dependent potentials.

For potentials decaying slowly in time which are perturbations of
many body hamiltonians, which appear in the analysis of N-body long
range scattering, phase-space methods were used in ref. 35, based on the
existence of an asymptotic energy operator in such cases. The AC Stark
effect was treated in ref. 44 by methods exploiting the special form of the
potential. Also related to our study is research concerning the wave equa-
tion with a time periodic potential or the free wave equation in the exterior
of a periodically oscillating obstacle; see, for example, refs. 4 and 40, and
those cited therein.

We consider a Hamiltonian, H0, with one bound state, perturbed by
a small and localized potential, time-periodic potential of the simple form
given in Hypothesis (H5). This assumption is made to simplify computa-
tions but the general method applies to problems with more than one
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bound state and to more general time-periodic or quasi-periodic perturba-
tions. An application, currently under investigation involves the structural
instability and meta-stability of "breather-like" modes of certain linear
wave-guide problems related to "M-soliton" solutions of integrable non-
linear flows.(21)

In this paper we treat a model of the ionization problem.(19,7) By treating
the process of ionization as a resonance caused by coupling of the point
spectrum to the continuous spectrum, we apply the time dependent
resonance theory, recently developed in refs. 37 and 38 to find the large
time behavior of the solution. In particular, we show that under our condi-
tions, the bound state is always disintegrating and find the lifetime,
T~r - 1 , and the spectral line shift, (4.21); see the remark following
Theorem 2.2. We also prove local decay estimates for the solution, which
are of general interest to nonlinear and other problems.

1.4. Notations and Terminology

Throughout this paper we will denote a generic constant by C, D, etc.
< x > = ( l +|x|2)1/2.
=Sf(,3f) = the space of bounded linear operators on 3P
Functions of self-adjoint operators are defined via the spectral

theorem.(28)

2. GENERAL FORMULATION AND MAIN RESULTS

Consider the general system

Here, </>(t) denotes a function of time, t, with values in a complex Hilbert
space 3f.

Hypotheses on H0

(H1) H0 is self-adjoint on :/f and both H0 and W(t), t e R 1 , are
densely defined on a subspace & of ,/f.

The norm on J/f is denoted by || • ||, and the inner product of f, ge tff,
by (f, g).

(H2) The spectrum of H0 is assumed to consist of an absolutely con-
tinuous part, c c o n t ( H 0 ) , with associated spectral projection Pc and a single
isolated eigenvalue Y0 with corresponding normalized eigenstate, \j/0, i.e.,
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In the scalar case w+ and w_ correspond to multiplication by < x > C

and < x > - C T , respectively; see Section 3.
The following hypothesis and Corollary ensure that the equation

satisfies sufficiently strong dispersive time-decay estimates.

(H3) Local decay estimates on e - i H 0 t: Let r>2 + e, where e>0.
There exist w+ and w_, as above, such that for all f:

(1) Typically one is not "handed" the singular estimate (2.4). It can
however be proved using (2.3) and the following:

(b^) Let A denote an open interval containing A0 + y" and contained in
the interior of the continuous spectrum of H0. Let gA denote a smooth
function of compact support which is identically one on A. Then, for all F
such that w+fetff

(2) To prove that (2.4) is implied by estimates (2.3) and (2.5), one
can follow very closely the approach taken in refs. 37 and 38. In particular,
see Proposition 2.1 and Appendix A of ref. 38. In ref. 38, the proofs are
carried out for a particular choice of $P, w+, and w_, but as indicated
in the remark following the main theorem of ref. 38, the proof can be
adapted to a more general setting and is virtually unchanged; one need
only replace L2 by a general Hilbert space Jf, <x>~ ' T by w_, and (jc)"
by w +. This requires hypothesis:

The manner in which we shall measure the decay of solutions is typi-
cally in a local decay sense, e.g., for the scalar Schrodinger equation we
measure local decay using the norms: f -> ||<x>~" f | |L2, where er>0. So
that our theory applies to a class of general systems (involving, for
example, vector equations with matrix operators), we assume the existence
of self-adjoint "weights," w_ and w+ such that

(i) w+ is defined on a dense subspace of 3? and on which w + > cl,
c>0.
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Our final hypothesis is a resonance condition which says that
H + A0eercont(H0) and that there is nontrivial coupling.

(H6) Resonance condition. There exists 00 > 0, independent of w,
such that

Remark. That the expression in (2.9) and the principal value term
in (2.13) below are finite is a consequence(2) of the local decay estimate
(H3) and the representation:

Our main result is the following:

Theorem 2.1. Let H0 satisfy hypotheses (H1)-(H6) and assume
w + (j>0eJ^f. Then, if |||W||| is sufficiently small, the solution of (2.1) satisfies
the local decay estimate:

In many applications, ft, is a spatially localized scalar or matrix function.
To measure the size of the perturbation W, we introduce the norm

can be made sufficiently small.

(H5) Hypotheses on the perturbation W(t). We consider time-depend-
ent symmetric perturbations of the form

(H4) There is a choice of real number c such that
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3. AN EXAMPLE: THE SCHRODINGER EQUATION

In this section we apply the results of Theorems 2.1 and 2.2 to the spe-
cial case of the Schrodinger equation with a time-periodic and spatially
localized perturbing potential, Eq. (1.3). Models of the sort considered in
this example occur in the study of ionization of an atom by a time-varying
electric field; see refs. 19 and 7.

where M(t) is of order ||| W|||2 and is oscillatory in t. Furthermore, <f> =
<t>1+<t>2 is explicitly given in (4.9), with | | w _ O ( t ) | | = £ ' < t > - r + 1 ) as |t| -> oo,
and therefore, by (H3) same holds | | w _ o d ( t ) | | = C<t> - r + 1 ) as |t| -> oo.

Remark. Suppose the initial data is given by the bound state of the
unperturbed problem, i.e., ( / > ( x , 0 ) = \l/0(x), a(0) = l, < / > d ( 0 ) = 0. Then, from
the expansion of the solution we have that for 0 < t < F-1 that the projec-
tion of the solution on i/^0 is of order e~rt, with an error of order |||W|||.
Hence it is natural to view the state \l/0e-iyot as a metastable state, with
lifetime T = r-1~ || |W||| -2.

Moreover,

For any fixed T0 > 0, we have

Theorem 2.2.

Remarks. In the proof we actually use a less stringent property
than (H6). Rather, we use that:

(H6') |||W||| 3 r-1 is sufficiently small.

Under the same hypotheses as Theorem 2.1, we obtain more detailed
information on the behavior of $(/):
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Hypothesis (H3b^) is a consequence of:

Proposition 3.2. Assume the above hypotheses on H0 and assume
that A denotes an open and bounded subinterval of the continuous spectrum

We begin by indicating assumptions on V(x) and /?(x) under which
(H1)-(H6) hold.

We take ;tf = L2(Rn) , and H0= -A + V(x), where V(x) and fi(x) are
real-valued, sufficiently differentiable and decaying rapidly as x e U" tends
to infinity. Thus, H0 is self-adjoint, and H0 and W(t) are densely defined
operators in L2. Moreover, we assume that H0 has exactly one negative
eigenvalue and the absolutely continuous spectrum of H0 is equal to the
positive half-line.

With regard hypothesis (H3), we take the weights used to measure
local energy decay to be w± = <x> ±a. There is a good deal of literature on
local energy decay estimates for e~ iH°tPe. These results require sufficient
regularity and decay of the potential V(x). We refer the reader to refs. 13,
15 and 23; see also refs. 27 and 31.

The large time expansion of the operator: < x > ~ f f e - i H 0 t P c < x > ~a in
L2 contains a non-generic leading order term of order t-1/2. More rapid
decay as t —> co is ensured provided we assume the following condition con-
cerning the behavior of the resolvent of H0 near zero energy:

(Z) Zero is not a resonance of the operator — A + V(x). For a precise
definition of zero energy resonance in this context and a detailed discussion
see refs. 13 and 23.

Remark. The condition (Z) holds generically in the space of poten-
tials.

Hypothesis (H3a) is a consequence of:

Proposition 3.1. Assume that V(x) is sufficiently regular and
decays sufficiently rapidly as \x\ -» oo; see refs. 13, 15, and 23. Additionally,
assume condition (Z). Then, we have the following local energy decay
estimate.
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with ft sufficiently differentiable and rapidly decaying in x, e.g., <.x>2o y ( x )
eL2. Thus, (H5) is satisfied as well. Finally, the resonance condition (H6),
holds generically in the potential V(x).

Therefore, our main theorems Theorems 2.1 and Theorems 2.2 on the
structural instability of the unperturbed bound state, and large time
behavior of such systems apply.

4. DECOMPOSITION AND DERIVATION OF THE
DISPERSIVE NORMAL FORM

As in refs. 37 and 38, we begin by deriving a decomposition of the
solution, 0(f), which will facilitate the study of its large time behavior. Let

with the orthogonality condition

Note therefore that <^ = Pc^d since H0 has been assumed to have only one
eigenvalue.

Remark. The required modifications in our analysis for the case
where W(t) has more general periodic or quasi-periodic time dependence,
and when H0 has more than one bound state can be seen at this point. If
H0 has M discrete eigenvalues, then the decomposition (4.1) is replaced by
a sum over the M discrete modes with amplitudes dj(t),j = 0,..., M —I, plus
the continuous spectral part. If W(t) has more general periodic or quasi-
periodic time dependence, in the analysis of the coupled equations for a j ( t )

Proof. If H0 is replaced by the Laplacian, this estimate is straight-
forward since gj(H0)f is spectrally supported away from points of stationary
phase. An approach to this estimate for H0, a variable coefficient operator is
reviewed in Appendix A and is based on the Mourre estimate, where the
operator A can be taken to be: A = (x . p + p . x)/2, where p= — iV.

We take the time-dependent perturbation to be of the form:

of H0. Let gA denote a smooth characteristic function, as defined in Section 2.
Then, for 2 < r < a,
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and <t>,i(t) (see below), we use an expansion of W(t] in terms of operators
of the form (2.7).

We proceed by first inserting (4.1) into (2.1), which yields the equa-
tion:

Taking the inner product of (4.3) with \//0 yields the following equation
for a(t):

In deriving (4.4) we have used that \l/o is normalized and the relation

a consequence of (4.2).
Applying Pc to (4.3), we obtain an equation for (j>d:

Since we are after a slow resonant decay phenomenon, it will prove advan-
tageous to extract the fast oscillatory behavior of a(t). We therefore define:

Then, (4.4) reads

Solving (4.6) by Duhamel's formula we have



Proof of Proposition 4.1. Using that cos fit = 1(e i u t + e~ i u t ) and the
definition A(t) =eiyot a(t), we get from (4.9)

We next give a detailed expansion of the sum in (4.10). It is in the 7= 1
term that the key resonance is found. This makes it possible to find a
normal form for (4.10) in which internal damping in the system is made
explicit. This damping is responsible for the energy transfer from the dis-
crete to continuum modes of the system and the associated radiative decay
of solutions.

Proposition 4.1.

Our analysis of the \t\ -> oo behaviour is based on a study of this system.
We next insert (4.9) into (4.8) we get

By standard methods, the system (4.8)-(4.9) for A ( t ) and <j>d(t) =
< t > ( t ) - e - i t o t A ( t ) \l/0 has a global solution in t with
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The choice of regularization, —is, in (4.14) ensures that the latter two
terms in the expansion of Kres, (4.15), decay dispersively as t—> +00; see
hypothesis (H3) and Section 6. For t<0, we replace +ie with — is in
(4.14).

The proof of Proposition 4.1 is now completed by substitution of the
expansion (4.15) for Kres into the last term in (4.13). |

We further expand the terms Rv and R2 to make explicit the resonant
contributions.

Proposition 4.3.

Note that Kres = l ime_>0 Kres. Integration of the expression in (4.14) by
parts, and letting e tend to zero from above gives

Proposition 4.2. The following expansion of Kres is valid in y\

The terms Rj, j = 2, 3, 4 in (4.11) come from an expansion of the last term
in (4.13). This is the source of the key resonant contribution. We now
proceed with a careful evaluation of this term.

We first regularize Kres. For ?>0 , let £ be positive and arbitrary and
define:

Therefore,
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where

Proof. To obtain (4.17) we use the well known distributional identity

Equation (4.16) follows by integration by parts. |

Combining Eq. (4.10) with the previous propositions, we have

Proposition 4.4.

where



where m(t) is a bounded and oscillatory function of zero mean.

Remarks. (1) The point of (4.19) is that the damping coefficient
(F> 0), which arises due to the coupling of the discrete bound state to the
continuum modes by the periodic perturbation, is made explicit. This
facilitates a direct study of the transfer of energy from the bound state to
the continuum and the associated radiative decay of solutions.

(2) The leading order part of Eq. (4.19) is the analogue of the disper-
sive normal form derived in ref. 39 for a class of nonlinear dispersive wave
equations.

In the next section we estimate the remainder terms in (4.9) and (4.19).

5. ODE ESTIMATES

Equations (4.9) and (4.19) comprise a dynamical system governing
<j>d(t) and a(t), the solution of which is equivalent to the original Eq. (1.1).
Our aim in this decomposition is to separate the dispersive (polynomially
time-decaying) part </>d(t) from the solution, as well as the transient
(exponentially time-decaying) part. In this and in the following section we
derive a coupled system of estimates for A(t) and <j>d(t). We show that A ( t )
decays in time, provided (f>d(t) is dispersively decaying and vice-versa.
Then, we exploit the assumption that the potential, W, is small to close the
resulting inequalities, and prove the decay of both A(t) and $d(t).

At this point, we state a simple Lemma which we shall use in a
number of places in this and in the next section.

Lemma 5.1. Let col.
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Here, (/>0 and (j>2 are given in (4.9), R1a and R1b in (4.18), R3 and R4 in
(4.11), and
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Solving (5.8) we get

Then, A satisfies the equation

where E(t) is given by (4.20). Let

Proof. To prove (5.4) we begin with (4.19)

where E(t) is given in (4.20) and (5.9). For any a> 1, R A ( t ) satisfies the
estimates:

Proof. The bound is obtained by viewing the integral as decomposed
into a part over [0, t/2] and the part over [t/2, t]. We estimate the integral
over [0, t/2] by bounding <; — .$ > -a by its value at t/2 and explicitly com-
puting the remaining integral. The integral over [r/2,/] is computed by
bounding <s> -B by its value at t/2 and again computing explicitly the
remaining integral. Putting the two estimates together yields the lemma.

We now turn to the estimate for A(t) in terms of the dispersive norm
of (/>d(t) and local decay estimates for e-iH0t Pc(H0).

Proposition 5.1. A(t), the solution of (4.19), can be expanded as:
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We now estimate the terms I1(t) and I2(t) in (5.13) for 2F - a < t < T .

Set

Note that on any fixed time interval, 0 < t < 2M, one has by Gronwall
type estimates that, |2( t ) \ and ||w_0d(t)|| are bounded by a constant
depending on the initial data and M. This bound is, in general, exponen-
tially large in M. We shall now focus on obtaining appropriate bounds for
these quantities on t-intervals, [2M, T), which are independent of T.

From (5.10) we have for any M>0:

and similarly for E(t), E(t). It is therefore sufficient to estimate A(t), in
terms of E(t).

Remark. Estimates of Ra(t), which appears in the statement of
Theorem 2.2, are related to those for RA(t) via:

Since the real part of p(t) is of the general form of c1cos w1t +
c2 sin w2t, its integral is bounded uniformly in t. Therefore,
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6. DISPERSIVE ESTIMATES AND LOCAL DECAY

In this section we prove the local decay of §d and the decay in time
of the remainder terms in the ODE of Section 4. To this end we will
repeatedly use the following

Lemma 6.1. For any n e [ 0 , r— 1]

and

Assembling the estimates (5.15) and (5.18) yields estimate (5.4) of
Proposition 5.1. Estimate (5.5) is a simple consequence of the definition of
RA(t).

This gives

The integral is now bounded above using the estimate

We estimate I2(t) on the interval 2F-a < t < T as follows:

for some s > 0. Therefore,
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which proves (6.1). The proof of (6.2) is identical, and uses the singular
local decay estimate of (H3).

We now define the norms

Proof. The proof follows from the assumed local decay estimates on
e - i H o t ; see (H3). Namely, using that r>2,
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and

Then we have

Proposition 6.1. For any T>0,

Proof. From Eq. (4.9) we get, using the assumed local decay estimate
for e - i H ° t and (6.1),
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Since ||u>+ W(s) \j/0\\ < ||| W\\\ \\\I/\\ = |||W||| and |||W||| is assumed to be
small, multiplying both sides of this last equation by < t > r - 1 and taking
supremum over t< T yields (6.5). |

We now estimate E(t).

Proposition 6.2. Let T> 0. For any t] e [0, r - 1 ]:

Proof, E(t) is defined in (5.6) and (4.19). From these equations it is
seen that we need to estimate the following terms:

by local decay estimates and our assumptions on H0, since A0 — /u is not in
the spectrum of H0.

The estimates of (<xy) repeatedly use Lemma 6.1. Let r\& [0, r— 1],

Estimation of (a.^:



Since ||| W\\\ assumed to be small, Proposition 6.2 follows. |

Finally, combining the above estimates for (a,-), 1 <j<6, we can now
bound [E ] n (T ) for any ne[0, r— 1] as follows:

Using Proposition 6.1 to estimate [<j>d]LD ,n (t) in (6.14), we get

Estimation of (x6) . Applying Lemma 6.1 as before we get, for
O < t < T ,

Estimation o f ( a 5 ) . Since, by definition, </>a(0) = PCOd(O) we can apply
local decay estimates for e~iH°' to get

Estimation o/(a4). This term is estimated in a manner similar to <x2

and <x3:

Estimation of (<x3) . Since A 0 + f t e a ( H 0 ) , we use (2.4) together with
the procedure used to estimate (<x2) . The result is:

since p and F are, respectively, linear and quadratic in ||| W\\\.
Applying Lemma 6.1 to (oc2) we then get

Estimation o/(a2). From (5.6) we have that
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[E]0 (2r - a) is bounded in terms of the initial data and ||| W\\\.
By hypothesis (H6), there is a positive constant 00, such that

Note that by Proposition 6.2 and the simple bound:

Next, we apply Proposition 6.2 which yields:

The right hand side of (6.18) is estimated using Proposition 5.1.

Proof. We begin with the expansion of A(t) given in Proposition 5.1.
Multiplying (5.2) by <t>r-1, and taking the supremum over 0<t< T we
have:

We can now complete the proofs of our main results, Theorem 2.1 and
Theorem 2.2. To prove the assertions concerning the infinite time behavior,
the key is to establish local decay of pd, in particular, the uniform bounded-
ness of [<l>d]LD,r - i (T)- This will follow directly from Proposition 6.1 if we
prove the uniform boundedness [ A ] r _ 1 ( T ) , o r equivalently [A]r_1 (T).

Proposition 6.3. There exists a constant C*, depending on ||00||,
||w +0o||, |||W|||, ^ and r, such that for any T>0
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This completes the proof of Proposition 6.3 and therewith the t -> oo
asymptotics asserted in Theorems 2.1 and 2.2.

Remark. This estimation procedure differs from one used in ref. 38,
where the cases r — 1 large and r — 1 small are treated differently.

It remains to prove the intermediate time estimate (2.12). The
ingredients are contained in (6.7) and its proof. First, by (5.3)

Let T0 denote an arbitrary fixed positive number. We estimate (6.24) for
te [0, T0r -1]. We bound the exponential in the integrand by one (explicit
integration would give something of order r - 1 ) , and bound | E ( r ) | by
estimating the expressions (aj), j= 1,..., 6 in the proof of Proposition 6.2.
First, the estimates of Proposition 6.2 for a1,o3 and o5 are useful as is.
Integration of the bounds (6.8), (6.11) and (6.13) gives:

To estimate the contributions of (a2) and (a4), first observe that by (6.9)
and Proposition 6.2 with r\ = 0

Using smallness of ||j W\\\ again, we finally arrive at

(Alternatively, we can obtain (6.22) by imposing that ||| W|||3 .T-1 be suf-
ficiently small.) Here, C1* and subsequent constants depend on ||O0||,
||w+M0||, |||W|||,r and r.

Next, we use Proposition 6.1 to bound [$,d]LD,r-1 (T), and we get

Therefore, for ||| W||| sufficiently small
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The above estimates and (H6) imply (2.12). This concludes the proof of
Theorem 2.2.

APPENDIX A. GENERAL APPROACH TO LOCAL DECAY
ESTIMATES

Hypothesis (H3) for our main theorem is one requiring that our
unperturbed operator, H0, satisfy a suitable local decay estimates. It is
remarked following this hypothesis that, in practice, the verification of (2.4)
uses (2.5). In this section we give an outline to a very general approach
to obtaining estimates of this type, based on a technique originating in the
work of Mourre;(22) see also ref. 25. In the following general discussion we
shall let H denote self-adjoint operator on a Hilbert space, -ft, keeping in

Recall that by (4.9) <d = o0 + 01+o2 . where o0(t) = e - i H ° t ( ) d (0) . Using
local decay estimates (H3), the contribution of the term (j>0(t) to (<x6) can
be bounded by C |||W|||2 ||»r + 0</(0) | | < r>- r + 1 . Multiplication of this
bound by e - r ( t - r ) and integration with respect to t gives the bound
C|||W|||2 ||w+0d(0)||. To assess the contributions from ( / > 1 + < / > 2 , note that
local decay estimates (H3) imply

Putting together the contributions from (j>0 and from </>1 + </>2, we have:

Finally, we come to the contribution of (<x 6 ) . We rewrite (a6) as follows.

Therefore, using local decay estimates we have:
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mind that our application is to the unperturbed operator H0. Let Eea(H),
and assume that an operator A can be found such that A is self-adjoint and
@(A)r\3#> is dense in #?. Let A denote an open interval with compact
closure. We shall use the notation:

is uniformly bounded in z, as an operator on 3f. If K = 0, then there are
no eigenvalues in the interval A.

Theorem A.2 (Sigal-Soffer; see refs. 34, 8, 36, 11, and 12). Assume
conditions (M1)-(M2) with N>2 and K=0. Then, for all e>0

can all be extended to a bounded operator on Jlf.

(M2) Mourre estimate:

for some 6 > 0 and compact operator, K.

Remark. The theorems below were orginally proved under more
restrictive conditions than (Ml).(5,8,22,25,34,36) The more general results
stated here can be proved using the approach to velocity bounds in ref. 12.

Theorem A.1 (Mourre; see ref. 5, Theorem 4.9; ref. 2, Lemma 5.4).
Assume conditions (M1)-(M2), with N = 2. Then, in the interval A, H can
only have absolutely continuous spectrum with finitely many eigenvalues of
finite multiplicity. Moreover, the operator

for the n-fold commutator.
Assume the two conditions:

(Ml) The operators
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for a < N — 1 . Here, F is a smoothed out characteristic function, and
F ( A / t < 0 ) is defined by the spectral theorem.

Remark, a is required to be smaller than N/2 in refs. 8 and 34 and
smaller than that in ref. 36. The above bound a < N — 1 is proved in ref. 12;
see Theorem 1.1 and the remark below it.

Let z/1 denote an open interval containing the closure of A.

Corollary A.1. Assume that < X > - C g a 1 ( H ) < A > C is bounded. Then,
in the above theorems we can replace the weight <A> -a by <x> -a.

The strategy for using the above results to prove local decay estimates
like that in (H4) is as follows. Then

Theorem A.2 is used to obtain the decay of the first term on the right hand
side of (A.7), while we can replace A by 6t in the second term.
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